解决问题的策略教案

时间:2024-06-21 16:01:24
解决问题的策略苏教版教案

解决问题的策略苏教版教案

在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。怎样写教案才更能起到其作用呢?下面是小编收集整理的解决问题的策略苏教版教案,仅供参考,欢迎大家阅读。

解决问题的策略苏教版教案1

教学内容:

五上第63~64页的例1、例2和练一练。

教学目标:

1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。

2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。

3、增强解决问题的策略意识,提高解决问题的实际能力。

教学重点:

能对信息进行用“一一列举”的策略解决实际问题。

教学难点:

能有条理的一一列举,并进行分析。

教学准备:

小棒、表格。

教学过程:

一、创设情景,体验列举

1、课前游戏:飞镖激趣

请几个精神饱满的同学上来玩飞镖游戏。投中内圈10环,中圈8环,外圈6环。比一比谁最厉害?

师:如果全班每人投一次,可能出现哪些不同的情况?你能一一列举出来吗?

打印:

板书:一一列举

2、揭示课题:

师:一一列举也是解决问题的一种策略,今天我们学习这种策略解决新的问题。

板书课题:解决问题的策略

二、自主探究,运用列举

(一)创设情景,引出问题

1、引发列举需要。

出示例题:(小黑板出示)

王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?

(1)创设情景:

师:图上有哪些数学信息?

生:18根1米长的栅栏围成的长方形周长就是18米。

师:围的时候要考虑什么?

生:长方形的长和宽。

(2)猜猜看会有几种围法。

(3)动手操作:

师:以两人小组为单位用小棒摆一摆,并记录你摆的长方形长和宽分别是多少?

①汇报交流:

生1:长8,宽1米。

生2:长5,宽4米。

……

②师:如果是180根栅栏用小棒摆又会怎么样?

生1:用小棒摆有点烦。

生2:答案可能有重复和遗漏(板书:重复、遗漏)

师:那么你们有什么好的方法?

2、运用填表列举

(1)出示表格:

师:用表格列举长和宽的和会怎样?生:长和宽的和一定是9米。

(打印表格每人一张)

(2)师:一共列举出多少种围法?

师:比较学生两种围法(有顺序和无顺序)哪种好?板书:有序

师:用表格列举与摆小棒相比有什么好处?

生:不重复,不遗漏。

板书:不重复,不遗漏

小结:在列举的时候我们要按照一定的顺序列举,这样答案才能不重复、不遗漏。

3、反思列举方法

(1)观察这张表格,你有什么新的发现?[小组里交流]

(2)师:如果你是工人师傅你会选择那种围法?

教师说明:在周长不变的前提下,当长方形的长和宽的差越大,面积就越小;长方形的长和宽数据越接近,面积就越大。

师:你们是用什么策略解决这个问题的?

小结:通过一一列举可以将答案不重复、不遗漏的列举出来。

(二)循序渐进,深入问题

1、出示题目:(小黑板)

订阅《科学世界》、《七彩文学》、《数学乐园》杂志,最少订阅1本,最多订阅3本。有多少种不同的订阅方法?

师:想想,最少订阅1本,最多订阅3本是什么意思?

2、一一列举:

师:你们打算用什么策略解决这个问题?

生:一一列举。

师:列举时,打算分哪几种情况?

生:分三类:订阅1本、2本、3本。

师:分步出示表头和三类情况。

(1)列举时可以用老师提供的表格,在表格里打钩。例如:《科学世界》“√”

(2)也可以用文字列举。例如:订阅1本、2本……

师:用自己喜欢的列举方式进行吧!

3、反馈交流:

师:你是怎样列举的?

师:一共有几种不同的情况?

三、拓展应用,发展列举

1、飞镖游戏:

师:“每人投中两次”是什么意思。

师:有多少种不同的情况?请在练习纸上自己列举出所有可能的答案。

2、完成练习十一第1题、第2题:

四、总结延伸,发展列举

1、通过这节课的学习,我们又认识了一种新的解决问题的策略“一一列举”。

思考:

(1)五(2)班有48人去划船,每条大船可坐6人,每条小船可坐4人;有多少种租船方案?

(2)五(2)班有48人去划船,每条大船可坐6人,每条大船租金24元;每条小船可坐4人,每条小船租金20元;哪种租船方案最省钱?

解决问题的策略苏教版教案2

教学内容:

苏教版三年级上册《解决问题的策略》第71—73页。

教学目标:

1、使学生在解决实际问题的过程中初步学会从条件出发展开思考,分析并解决相关问题。

2、使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理的能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学准备:

多媒体课件、相关板贴

教学过程:

课前交流:

有9个小朋友要过一条河,河边只有一条小船(船上没有船夫),船上每次只能坐5个人,小船至少要运几次,才能使9人全部过河?

你们能想到好办法帮助他们过河吗?

一、导入新课

刚才同学们用我们所学的知识解决生活问题,其实解决数学问题也需要策略。(出示课题)今天我们来学习解决问题的策略。

二、导学探究

(一)理解题意

1、出示条件:“小猴帮妈妈摘桃,第一天摘了30个,第二天比第一天多摘5个。”

从题目中你知道了哪些信息?数学上把已经知道的信息称为条件,有了这两个条件就可以提问题了。出示问题:第三天摘了多少个?

学生口答。

……此处隐藏11337个字……一共有多少种不同的方法?(分别板书)

2、那么为了不遗漏、不重复,解决这个问题我们也可以利用这样的表格一一列举。

① 出示表格

① 出示表格

只订1本 订2本 订本

《科学世界》

《七彩文学》

《数学乐园》

② 指导生用划√的方法表示订阅的种类

先指导只订1本的

再指导订2本的(让生自己先分析怎么划√,再让生形成共识,划两个√代表一种订法)

最后指导订3本的

③ 看表格找出共有几种不同的订法(竖行数出)

4、:刚才用了一一列举的策略解决了这个问题,想一想要想得到全部答案,列举时要注意什么?(既不重复,也不遗漏)

四、巩固新知

生活中有很多类似的问题,我们也能够用一一列举来解决。

1、P64练一练:

一张靶纸共3环,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中两次,可能得到多少环?(列举出所有可能的答案)

你打算用什么策略解决这个问题?你会列举吗?

试一试(注意有序性)

2、练习十一第一题:

课件显示问题:

先分析题意(红色标出部分表示什么)

生完成表格(完成在书上P66)

用你喜欢的方法,标记出几时几分第二次同时发车。(并和同桌轻声交流)

解决问题的策略苏教版教案9

教学内容:

苏教版国标本教材第九册63-64页。

教学目标:

1、使学生经历用列举的策略解决简单的实际问题的过程,能通过不遗漏,不重复的列举找到符合要求的所有答案。

2、 使学生在对解决简单实际问题的过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。

3、使学生进一步积累解决问题的经验,增强解决问题的信心。

教学重点:

能对信息进行分析,用一一列举的策略解决实际问题。

教学难点:

能有条理的一一列举,发展思维的条理性和严密性。

教学过程:

一、谈话导入 回忆策略

1、谈话:老师先来和大家玩个游戏,怎么样?看,这是什么?(扑克牌)

老师抽出大王和小王,你们知道一副扑克牌有几种不同的花色吗?(四种)

老师从中任意抽出一张,猜一猜有多少种不同的结果?(四种)是哪四种呢?(草花,黑桃,红心,方块)

2、揭题:刚才同学们将这些花色一个一个列举了出来(板书:一一列举),一一列举也是我们解决数学问题时经常要用到的一种策略。今天我们一起来研究这种解决问题的策略(板书课题)。

二、教学例题 探究列举的方法

(一)情景创设 呈现问题

1、师:我校操场东面有一块空地,学校想将把这块空地利用起来,用18根1米长的栅栏围成一个长方形的花圃,有多少种不同的围法?

(1)从条件中你获得了哪些数学信息?(周长是18米)你是怎么知道的?

(2)真了不起,你连这隐藏的数学信息也找出来了,周长是18米,那么说明长和宽的和是多少?(课件出示,长+宽=9米)

(3)长方形的长+宽=9米,那么这个长方形花圃可以怎样围?你能帮老师来设计一下这个长方形花圃吗?

请拿出准备的小棒,同桌合作摆一摆,并想想有没有不同的围法吗?

2、学生尝试操作。

(1)学生操作,教师指导。

(2)交流反馈:哪个小组先来说说你们的围法?检验是否符合要求。

其它小组有不同的摆法吗?

解决问题的策略苏教版教案10

教学内容:教科书第88~89页的例1、例2和“练一练”,练习十六的第1、2题

教学目标:

1.使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

2.使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心

教学过程:

一、学习例1

1.呈现问题。

(1)出示“原来的”两杯果汁,并出示条件“两杯果汁共400毫升”。

提问:如果把甲杯中的40毫升果汁倒人乙杯,这两杯果汁的数量分别会发生怎样的变化?

(2)学生回答上述问题后进行实际的操作演示,让学生发现不仅甲杯减少了.乙杯增加了,而且甲杯和乙杯正好同样多。

(3)回顾操作过程,出示例题中条件部分的完整示意图,提出问题:原来两杯果汁各有多少毫升?

2.解决问题。

(1)提问:把甲杯中的40毫升果汁倒人乙杯后,两个杯子里的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?

(2)小组讨论:知道了现在两个杯中的果汁数量,可以怎样求原来两个杯中的果汁数量?可以用怎样的方法来解决?

(3)在学生提出“再倒回去看一看”时,追问:如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

(4)学生画图后,组织展示、交流,并相机呈现教材的第二组示意图。

3.填表回顾,加深对“倒过来推想”的体验。

(I)回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程将教材中的表格填写完整吗?要求边填边想表中的每个数据各是怎样推算出来的。

(2)提问:在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么特点?

二、学习例2

1.出示例2,让学生读题后,再要求说说题目的大意。提问:用什么方法可以将题目的意思更清楚地表示出来?

2.在学生讨论后,指出:可以按题意摘录条件进行。出示下图:

原有?张一—→又收集了24张一—→送给小军30张一—→还剩52张

提问:你能根据上图再说说题目的大意吗?要求小明原来有多少张邮票,你准备用什么策略来解决?

3.明确可以用“倒过来推想”的策略解决问题后,提出:你能仿照上图的样子,表示出“倒过来推想”的过程吗?

学生尝试画出倒推的示意图后,出示下图:

原有?张←一一去掉24张←一一跟小军要回30张←一一还剩52张

4.要求学生根据答案和“小明邮票张数”的变化情况顺推过去,看看剩下的是不是52张。

5.引导反思:解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

三、应用巩固

出示“练一练”,学生各自读题。

四、课堂作业

做练习十六的第1、2题。

《解决问题的策略苏教版教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式