《方程的意义》教案

时间:2024-11-25 20:30:16
《方程的意义》教案

《方程的意义》教案

作为一名教学工作者,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。怎样写教案才更能起到其作用呢?下面是小编整理的《方程的意义》教案,欢迎阅读,希望大家能够喜欢。

《方程的意义》教案1

教学内容:人教版小学数学五年级上册第53~54页内容,方程的意义教学设计。

教学目标:

1、理解和掌握方程的意义,弄清楚方程和等式两个概念的关系。

2、培养学生认真的观察、思考分析问题的能力。

3、通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。

教学重点:理解和掌握方程的意义。

教学难点:弄清方程和等式的异同。

教学过程:

 一、 创设情境,生成问题

(1)出示ppt 显示曹冲称象的画面 引导同学们自己思考怎么把大象的重量称出来

小组之间讨论并得出结论 全班集体订正。继而引出相等,平衡的概念。

(2)课件出示天平,让学生说说天平的特点。师概括总结得出天平的平衡这一特点。

师;怎样才能使天平左右两边相等?

出示一架天平的左边是有物体20克和30克,右边是50克

师:用算式怎么表示?

生:20+30=50

引导总结得出这个一个等式。

二、探索交流,解决问题再出示天平左边是20克的物体和?克的物体,右边是100克的物体,教案《方程的意义教学设计》。

师:“?”表示什么?我们可以用什么表示?

生:用字母表示。

生1:20+x=100

生2:100-x=20

生3:100-20=x

师:你认为用哪个式子更能表示天平的作用两边是平衡的?

引导得出:20+x=100 表示天平左右两边是平衡的.

出示6架天平,根据天平的平衡状态写算式。

把这8个算式标号,得练习:

①20+30=50 ⑤ 80<2χ

②20+χ=100 ⑥ 3χ=180

③50×2=100 ⑦100+20<100+50

④50+2χ> 180 ⑧100+2χ=3×50

思考:你能给这些式子分类吗?并说说是按照什么标准分类的。

同桌合作交流汇报

等式 不等式

①20+30=50 ④50+2χ> 180

②20+χ=100 ⑤ 80<2χ

③50×2=100 ⑦100+20<100+50

⑥ 3χ=180

⑧100+2χ=3×50

含有未知数的式子 不含未知数的式子

②20+χ=100 ①20+30=50

④50+2χ> 180 ③50×2=100

⑤ 80<2χ ⑦100+20<100+50

⑥ 3χ=180

⑧100+2χ=3×50

师:既是等式,又含有未知数的的式子有哪几个?

生:②20+χ=100

⑥ 3χ=180

⑧100+2χ=3×50

像这种含有未知数的等式我们今天给它起个新的名字,称为“方程”

三、巩固应用,内化提高

练习:下面哪些是方程?哪些不是方程?

① 35-χ =12 ( ) ⑥ 0.49÷χ =7 ( )

② Y+24 ( ) ⑦ 35+65=100 ( )

③ 5 χ+32=47 ( ) ⑧χ-14> 72 ( )

④ 28< 16+14( ) ⑨9b-3=60 ( )

⑤ 6(a+2)=42 ( ) ⑩ χ +y=70 ( )

张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

(1) 6X + ( =78

(2) 36 + ( ) =42

四、回顾整理,反思提升 通过这一节课的学习,你有哪些收获?

《方程的意义》教案2

一、教学内容:

人教版五年级上册第62~63页“方程的意义”。

二、教学目标:

1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。

2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。

3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的学习习惯,渗透转化的数学思想。

三、教学重、难点:

1.教学重点:理解并掌握方程的意义。

2.教学难点:建立“方程”的概念,并会应用。

四、教学过程:

(一)情境引入

今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)

(二)探究新知

1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)

请同学们仔细观察,在这副图里你获得了哪些信息?

师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。

2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)

3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?

师:我们不知道加入的水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)

师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到 ……此处隐藏16764个字……内容:

方程的意义和解简易方程(教材第105一107页,练习二十六)。

教学要求:

1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

教 具:

教学天平、小黑板。

学 具:

自制的简易天平、定量方块。

教学步骤:

一、复习

1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

(1)一个加数=( )○( )

(2)被减数=( )○( )

(3)减数=( )○( )

(4)一个因数=( )○( )

(5)被除数=( )○( )

(6)除数=( )○( )

2.求未知数x(并说说求下面各题x的依据)。

(1)20十x=100 (2)3x=69

(3)17—x=0.6 (4)x÷5=1.5

二、新授

1.理解和掌握“方程的意义”。

(1)出示天平,介绍使用方法(演示)后,设问:

在天平两边放物体,在什么情况下才能使天平保持平衡?

(两边的物体同样重时,天平才能保持平衡。)

(2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?

板书:20十30=50

指出:表示左右两边相等的式子叫等式。

(并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

(3)教学例2(课本105页)。

①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。怎样用等式表示出来呢?

板书:20+?=100

②等式“20+?=100”中的?是未知数,通常我们用“x”来表示,那么上面的等式可写成 (板书)20十x=100

③比较:等式“20+x=100”与等式“20+30=50”有什么不同?(含有未知数)教师指出,“20+x=100”是含有未知数的等式。

④想一想:x等于多少,才能使等式“20+x=100”左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即x=30)

(4)教学例3(课本106页)。

出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:

①图中每个篮球的价钱是x元,3个篮球的总价是多少元?(3x)

②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?

(板书)3x=234

③这个等式有什么特点?(含有未知数)当x等于多少时,这个等式等号左右两边正好相等?(x=78)

(5)方程的意义:

综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:

20+30=50……一般的等式

20+x=200 含有未知数的等式

3x=234 称之为方程

(板书)像20+x=100 3x=234 x—10=35 x÷12=5等,含有未知数的等式叫做方程。

①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)

②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分,小学数学教案《数学教案-方程的意义和解简易方程》。)

(6)练一练(指名学生判断,并说明理由)教材第106页“做一做”。

2.学习“解简易方程”。

(i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?

(板书)使方程左右两边相等的未知数的值,叫做方程的解。

例如:x=80是方程20+x=100的解;

x=78是方程3x=234的解。

(板书)求方程的解的过程叫做解方程。

②方程的解和解方程有什么联系和区别?

方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。

(2)教学例1:

解方程x一8=16

①教师指出:我们以前做过一些求未知数x的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

②引导学生说出自己的推想过程:题中的未知数x相当于什么数?(被减数)怎么求被减数?(减数十差)

(板书)解方程x一8=16

解::根据被减数等于减数加差;

x=16十8(与原来学过的求x的思路相同)

x=24

检验:把x=24代人原方程

左边=24一8=16,右边=16

左边=右边

所以x=24是原方程的解。

总结有关的格式要求:

①做题时要先写上“解”字。

②各行的等号要对齐,并且不能连等。

③方框里的运算根据可以不写。

④验算以“检验”的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

指导学生看教材第105一107页。

三、巩固

1.教材107页“做一做”。

2,教材第108页练习二十六第1、2题。

四、练习

教材第108页,练习二十六第3~5题。

作业辅导

1.判断题。

(1)含有未知数的式子叫方程。 ( )

(2)方程是等式,所以等式也叫方程。 ( )

(3)检验方程的解,应当把求得的解代人原方程。()

(4)36是方程x÷3=12的解。 ( )

2.把下面的各关系式写完整。

(1)一个加数=( )○( )

(2)被减数=( )○( )

(3)减数=( )○( )

(4)一个因数=( )○( )

(5)除数=( )○( )

(6)被除数=( )○( )

3.解下列方程。(第一行两小题要写出检验过程)

10—x=0.42 4.5x=27 x十5.8=16.4

x÷28=76 2÷x=0.5 x—8.75=4.65

板书设计:

解简易方程

《《方程的意义》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式