【实用】数学说课稿集合五篇
作为一名教学工作者,通常需要准备好一份说课稿,借助说课稿我们可以快速提升自己的教学能力。我们应该怎么写说课稿呢?下面是小编整理的数学说课稿5篇,仅供参考,大家一起来看看吧。
数学说课稿 篇1一、说教材:
《平行四边形的面积》人教版五年级数学上册第五单元第一课时的内容。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,再从长方形的面积计算公式推出平行四边形的面积计算公式,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。
二、说教学目标:
1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念。
三、说教学重点、难点:
利用剪、拼的实际操作来推导平行四边形的面积公式既是本节课的重点,也是本节课的难点;这一环节关键是学生对平行四边形与长方形的转化问题的理解,通过“剪、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形面积的计算公式。
四、说教法、学法
我打算主要采用动手操作,自主探索,合作交流的学习方式,通过实践操作,以激发学生的学习兴趣。通过学生动手操作、观察、实验得出结论。在教学过程中,我培养学生初步感知和运用转化的方法,引导,学生通过观察、比较、操作、概括等行为来解决新问题,
五、说教学程序
(一)、复习旧知,导入新课。
设计意图:引导学生回忆已经学过的平面图形,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
(二)、创设情景,引出问题。
出示一个长方形和一个平行四边形,这对好朋友发生了争论了,它们都说是自己的面积要大,你们认为谁的面积要大呢?你是怎么知道谁的面积大呢?
设计意图:通过问题,促使学生积极动脑猜想,鼓励学生多角度思考问题,再通过合作交流,能想出各种方法将平行四边形转化成长方形。
(三)动手实践,探究发现
1、数方格,引出猜想。
设计意图:通过数格子的方法,并填写表格,从表格中学生很容易观察到平行四边形的面积与长方形的面积相等。
这时启发学生猜想,是不是平行四边形的面积就是底乘高呢?刚才我们用数格子的方法来计算长方形和平行四边形的面积,但这种方法有一定的局限性,当一个平行四边形很大很大的时候,我们也采用数格子的方法来求平行四边形的面积吗?这就引发学生思考,是否有其他的方法来求平行四边形的面积呢?
2,剪拼法,验证猜想。
设计意图:让学生动手操作,想办法将平行四边形转化为长方形。
学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长?宽,所以平行四边形的面积=底?高,公式用字母表示S=ah。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
3、解决实际问题
教学例1:平行四边形花坛的底是8m,高是5m,它的面积是多少?学生写完整整个解题过程。
这一环节的设计意图:了解学生对于平行四边形面积公式应用与掌握程度
(四)分层训练。
第一层:基本练习
第二层:拓展练习
设计意图:对于新知需要组织学生巩固运用,才能得到理解和内化。我本着“重基础,验能力拓思维”。让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”教学理念。
(五)课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
设计意图:学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
五:板书设计。
平行四边形的面积
长方形的面积= 长?宽
↓ ↓
平行四边形的面积= 底?高
S = a×h= ah
数学说课稿 篇2一、教材结构与内容简析
1 本节内容在全书及章节的地位:
《向量》出现在高中数学第一册(下)第五章第1节。本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。
2 数学思想方法分析:
(1) 从“向量可以用有向线段来表示”所反映出的“数”与“形”之间的转化,就可以看到《数学》本身的“量化”与“物化”。
(2)从建构手段角度分析,在教材所提供的材料中,可以看到“数形结合”思想。
二、 教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征 ,制定如下教学目标:
1 基础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。
2 能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。
3 创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《向量》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。
4 个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。
三、 教学重点、难点、关键
重点:向量概念的引入。
难点:“数”与“形”完美结合。
关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。
四、 教材处理
建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出“数形结合”呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间 ……此处隐藏6795个字……些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?
解:s=πr?(r>0)
例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)?
=100(x?+2x+1)
= 100x?+200x+100(0
教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3.为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5.b和c是否可以为零?
由例1可知,b和c均可为零。
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。
【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)?+1
(2)s=3-2t?
(3)y=(x+3)?- x?
(4) s=10πr?
(5) y=2?+2x
(6)y=x4+2x2+1(可指出y是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm.
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。
【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够"跳一跳,够得到".
(五)拓展延伸
1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
2.确定下列函数中k的值
(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______
(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______
【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.
(六) 小结思考
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。
(七) 作业布置
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?
2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。
选做题:
1.已知函数 是二次函数,求m的值。
2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。
四。教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
文档为doc格式